Los Angeles River Habitat Enhancement Study & Opportunities Assessment

Presentation to One Water October 16, 2017 Jill Sourial, Sophie Parker, John Randall, Shona Ganguly

Scope of Work

- Ecological Baseline for the Los Angeles River
- Historic Ecological Conditions
- Biological Survey
- Hydrology and Flow Scenarios
- Habitat Enhancement Opportunities

Study Area

2.5 miles from Griffith Park to Taylor Yard

LA River Plant Propagation, Invasive Species Removal, & Revegetation

LA River Study Area and Project Area

UCLA Department of Geography, Benjamin and Gladys Thomas Air Photo Archives, Spence Air Photo Collection

Summary of Biotic Conditions (Survey Period: Oct 2014 to Sep 2015)

Plants

- 76 native species
- 167 total species
- Invasive plants, like arundo & castor bean
- 4 vegetation communities
- Native willow, oak and sycamore trees

Reptiles & Amphibians

- 5 natives, incl. western toad
 & Pacific chorus frog
- 7 total species
- 2 invasive species
- Lizards, like western fence lizard use river pocket parks

Birds

- 89 native species
- 106 total species
- Birds use in-stream & adjacent upland habitat
- Breeding documented or inferred for 33 bird species

Insects

- 102 taxonomic families
- Native plants are diversity hotspots
- Low diversity of aquatic insects
- Invasive Argentine ants

Mammals

- 10 native species
- 17 total species, like coyote, desert cottontail, California ground squirrels
- 5 bat species, like Yuma myotis and big brown bat

Fish

- No native fish
- 1992 & 2007 surveys found
 5 non-native fish, like carp
 and mosquito fish
- Lack of hydrological connections and refugia for natives

Dry Season Surface Flow (May – Sep)

Cilow (Iviay Sch)

--- Mean

—— Median

Components of Dry Season Flow (acre feet)

		Rising Ground	Owens River		Burbank	LA- Glendale	Tilman
Year	Total	water	Discharge	Runoff	WRP	WRP	WRP
1928	650		650		NA	NA	NA
1951	6,290	3,110	1,430	1,750	NA	NA	NA
1971	11,821	3,602		5,126	3,093	NA	NA
1982	21,070	3,460		9,922	4,670	3,018	NA
1993	91,083	2,952		7,071	5,320	12,576	63,164
2004	77,137	6,309		9,186	8,119	11,378	42,145
2012	69,619	1,754		11,584	7,422	12,898	35,961

Summary

- Dry weather flow was ephemeral and much lower than today.
- Hydrology drives biology: high dry weather flow and channelization support novel vegetation assemblages.
- The existing river features, vegetation assemblages, and concrete mimic some important features of native habitat.
- Many native habitat specialists that historically occurred in the Los Angeles River have been extirpated.
- Generalist species thrive on the river.
- Habitat enhancement or creation could allow populations of native animals to disperse from adjacent upland and riparian areas (e.g. Sepulveda Dam).

Flow Scenarios (compared to existing condition)

Scenario	Dry Weather Flow	Wet Weather Flow
Existing Condition	High	Very High
Stormwater Capture	Slightly Lower	Lower
Effluent Recycling	Much Lower	Slightly Lower
Water Supply & Habitat Resiliency	Much Lower	Lower

Next Steps and Questions

Habitat Enhancement Project Opportunities In-Channel

In-Channel Result Compared to Historic Condition	Scenario 1 Existing Condition (1991–Present)	Scenario 2 Stormwater Capture Focus	Scenario 3 Effluent Recycling Focus	Scenario 4 Water Supply & Habitat Resiliency Focus
1. In-Channel Habitat Enhancement with Passive Recruitment	5–10 years to control giant reed; passive increases over 3–5 years in quality of existing riparian habitat	Same as Scenario 1, but possibility of cleaner urban runoff inputs leading to higher quality aquatic habitat	3–5 years to control giant reed; passive increases over 3–5 years in quality of existing riparian habitat	Same as Scenario 3, but likely faster giant reed control, & reduced threat of scouring flows during plant establishment period
2. In-Channel Habitat Enhancement with Active Planting/ Seeding	5–10 years to control giant reed; increases in quality of existing riparian habitat in 1–3 years	Same as Scenario 1, but possibility of higher quality aquatic habitat; & reduced risk of scouring flows during plant establishment period from large storm	3–5 years to control giant reed; increases in quality of existing riparian habitat in 1–3 years	Same as Scenario 3, but likely faster giant reed control, & reduced threat of scouring flows during plant establishment period

Habitat Enhancement Project Opportunities Out-of-Channel

. . .

. . . .

. . .

. . .

Public engagement

Enhancement

	Scenario 1	Scenario 2	Scenario 3	Scenario 4
Out-of-Channel Result Compared to Historic Condition	Existing Condition (1991–Present)	Stormwater Capture Focus	Effluent Recycling Focus	Water Supply & Habitat Resiliency Focus
HISTORIC CONTUNION				rocus
3. Create River- Adjacent Floodplain Habitat in the State Park Bowtie Parcel	1–3 years of weed control; over 3–5 years increases in quality of adjacent in-channel riparian habitat and creation of high quality floodplain scrub habitat	Same as Scenario 1, but more funding opportunities for creating ephemeral wetland habitat on-site that also provides stormwater capture	Similar to Scenario 1	Same as Scenario 2, with higher biodiversity supported by higher quality, complementary in-stream habitat
4. Create River- Adjacent Floodplain Habitat in the G2 Taylor Yard Parcel	1—3 years of weed control; over 3—5 years increases in quality of adjacent in-channel riparian habitat and creation of high quality floodplain scrub habitat	Same as Scenario 1, but more funding opportunities for creating ephemeral wetland habitat on-site that also provides stormwater capture	Similar to Scenario 1	Same as Scenario 2, with higher biodiversity supported by higher quality, complementary in-stream habitat
5. Elysian Park Native Habitat Enhancement	Higher quality upper terrace and upland habitat, providing complementary ecosystem services and habitat for riparian wildlife in 3–5 years, & engage local community	Same as Scenario 1, but more funding opportunities related to stormwater capture projects	Same as Scenario 1	Same as Scenario 2
6. Re-Oaking: Urban Tree & Shrub Enhancement	Increase oak woodland canopy for benefit of wildlife over 1–10 years	Same as Scenario 1, but more funding opportunities related to stormwater capture	Same as Scenario 1	Same as Scenario 2

stormwater capture

projects

*Insect Species Richness estimated to be several thousand

Change in Vegetation Communities of the Los Angeles River in the Elysian Valley

