Los Angeles River Habitat Enhancement Study & Opportunities Assessment Presentation to One Water October 16, 2017 Jill Sourial, Sophie Parker, John Randall, Shona Ganguly ## Scope of Work - Ecological Baseline for the Los Angeles River - Historic Ecological Conditions - Biological Survey - Hydrology and Flow Scenarios - Habitat Enhancement Opportunities Study Area 2.5 miles from Griffith Park to Taylor Yard LA River Plant Propagation, Invasive Species Removal, & Revegetation LA River Study Area and Project Area UCLA Department of Geography, Benjamin and Gladys Thomas Air Photo Archives, Spence Air Photo Collection # Summary of Biotic Conditions (Survey Period: Oct 2014 to Sep 2015) #### **Plants** - 76 native species - 167 total species - Invasive plants, like arundo & castor bean - 4 vegetation communities - Native willow, oak and sycamore trees #### **Reptiles & Amphibians** - 5 natives, incl. western toad & Pacific chorus frog - 7 total species - 2 invasive species - Lizards, like western fence lizard use river pocket parks #### **Birds** - 89 native species - 106 total species - Birds use in-stream & adjacent upland habitat - Breeding documented or inferred for 33 bird species #### **Insects** - 102 taxonomic families - Native plants are diversity hotspots - Low diversity of aquatic insects - Invasive Argentine ants #### **Mammals** - 10 native species - 17 total species, like coyote, desert cottontail, California ground squirrels - 5 bat species, like Yuma myotis and big brown bat #### Fish - No native fish - 1992 & 2007 surveys found 5 non-native fish, like carp and mosquito fish - Lack of hydrological connections and refugia for natives ## Dry Season Surface Flow (May – Sep) Cilow (Iviay Sch) --- Mean —— Median # Components of Dry Season Flow (acre feet) | | | Rising
Ground | Owens
River | | Burbank | LA-
Glendale | Tilman | |------|--------|------------------|----------------|--------|---------|-----------------|--------| | Year | Total | water | Discharge | Runoff | WRP | WRP | WRP | | 1928 | 650 | | 650 | | NA | NA | NA | | 1951 | 6,290 | 3,110 | 1,430 | 1,750 | NA | NA | NA | | 1971 | 11,821 | 3,602 | | 5,126 | 3,093 | NA | NA | | 1982 | 21,070 | 3,460 | | 9,922 | 4,670 | 3,018 | NA | | 1993 | 91,083 | 2,952 | | 7,071 | 5,320 | 12,576 | 63,164 | | 2004 | 77,137 | 6,309 | | 9,186 | 8,119 | 11,378 | 42,145 | | 2012 | 69,619 | 1,754 | | 11,584 | 7,422 | 12,898 | 35,961 | ## Summary - Dry weather flow was ephemeral and much lower than today. - Hydrology drives biology: high dry weather flow and channelization support novel vegetation assemblages. - The existing river features, vegetation assemblages, and concrete mimic some important features of native habitat. - Many native habitat specialists that historically occurred in the Los Angeles River have been extirpated. - Generalist species thrive on the river. - Habitat enhancement or creation could allow populations of native animals to disperse from adjacent upland and riparian areas (e.g. Sepulveda Dam). ## Flow Scenarios (compared to existing condition) | Scenario | Dry Weather
Flow | Wet Weather
Flow | |---|---------------------|---------------------| | Existing
Condition | High | Very
High | | Stormwater
Capture | Slightly Lower | Lower | | Effluent
Recycling | Much
Lower | Slightly Lower | | Water Supply &
Habitat
Resiliency | Much
Lower | Lower | ## **Next Steps and Questions** ### Habitat Enhancement Project Opportunities In-Channel | In-Channel Result
Compared to
Historic Condition | Scenario 1 Existing Condition (1991–Present) | Scenario 2
Stormwater
Capture Focus | Scenario 3 Effluent Recycling Focus | Scenario 4 Water Supply & Habitat Resiliency Focus | |--|--|--|---|---| | 1. In-Channel Habitat
Enhancement with
Passive Recruitment | 5–10 years to control
giant reed; passive
increases over 3–5
years in quality of
existing riparian habitat | Same as Scenario 1,
but possibility of
cleaner urban runoff
inputs leading to higher
quality aquatic habitat | 3–5 years to control
giant reed; passive
increases over 3–5
years in quality of
existing riparian habitat | Same as Scenario 3,
but likely faster giant
reed control, & reduced
threat of scouring flows
during plant
establishment period | | 2. In-Channel Habitat
Enhancement with
Active Planting/
Seeding | 5–10 years to control giant reed; increases in quality of existing riparian habitat in 1–3 years | Same as Scenario 1,
but possibility of higher
quality aquatic habitat;
& reduced risk of
scouring flows during
plant establishment
period from large storm | 3–5 years to control
giant reed; increases in
quality of existing
riparian habitat in
1–3 years | Same as Scenario 3,
but likely faster giant
reed control, & reduced
threat of scouring flows
during plant
establishment period | ## Habitat Enhancement Project Opportunities Out-of-Channel Public engagement **Enhancement** | | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | |---|---|---|-----------------------------|---| | Out-of-Channel Result Compared to Historic Condition | Existing Condition
(1991–Present) | Stormwater
Capture Focus | Effluent Recycling
Focus | Water Supply &
Habitat Resiliency
Focus | | HISTORIC CONTUNION | | | | rocus | | 3. Create River-
Adjacent Floodplain
Habitat in the State
Park Bowtie Parcel | 1–3 years of weed control; over 3–5 years increases in quality of adjacent in-channel riparian habitat and creation of high quality floodplain scrub habitat | Same as Scenario 1,
but more funding
opportunities for
creating ephemeral
wetland habitat on-site
that also provides
stormwater capture | Similar to Scenario 1 | Same as Scenario 2,
with higher biodiversity
supported by higher
quality, complementary
in-stream habitat | | 4. Create River-
Adjacent Floodplain
Habitat in the G2
Taylor Yard Parcel | 1—3 years of weed control; over 3—5 years increases in quality of adjacent in-channel riparian habitat and creation of high quality floodplain scrub habitat | Same as Scenario 1,
but more funding
opportunities for
creating ephemeral
wetland habitat on-site
that also provides
stormwater capture | Similar to Scenario 1 | Same as Scenario 2,
with higher biodiversity
supported by higher
quality, complementary
in-stream habitat | | 5. Elysian Park Native
Habitat Enhancement | Higher quality upper
terrace and upland
habitat, providing
complementary
ecosystem services and
habitat for riparian
wildlife in 3–5 years, &
engage local community | Same as Scenario 1,
but more funding
opportunities related to
stormwater capture
projects | Same as Scenario 1 | Same as Scenario 2 | | 6. Re-Oaking:
Urban Tree & Shrub
Enhancement | Increase oak woodland
canopy for benefit of
wildlife over 1–10 years | Same as Scenario 1,
but more funding
opportunities related to
stormwater capture | Same as Scenario 1 | Same as Scenario 2 | stormwater capture projects *Insect Species Richness estimated to be several thousand Change in Vegetation Communities of the Los Angeles River in the Elysian Valley